Sex-biased lethality or transmission of defective transcription machinery in Arabidopsis.
نویسندگان
چکیده
Unlike animals, whose gametes are direct products of meiosis, plant meiotic products undergo additional rounds of mitosis, developing into multicellular haploid gametophytes that produce egg or sperm cells. The complex development of gametophytes requires extensive expression of the genome, with DNA-dependent RNA polymerases I, II, and III being the key enzymes for nuclear gene expression. We show that loss-of-function mutations in genes encoding key subunits of RNA polymerases I, II, or III are not transmitted maternally due to the failure of female megaspores to complete the three rounds of mitosis required for the development of mature gametophytes. However, male microspores bearing defective polymerase alleles develop into mature gametophytes (pollen) that germinate, grow pollen tubes, fertilize wild-type female gametophytes, and transmit the mutant genes to the next generation at moderate frequency. These results indicate that female gametophytes are autonomous with regard to gene expression, relying on transcription machinery encoded by their haploid nuclei. By contrast, male gametophytes make extensive use of transcription machinery that is synthesized by the diploid parent plant (sporophyte) and persists in mature pollen. As a result, the expected stringent selection against nonfunctional essential genes in the haploid state occurs in the female lineage but is relaxed in the male lineage.
منابع مشابه
Molecular Foundations of Reproductive Lethality in Arabidopsis thaliana
The SeedGenes database (www.seedgenes.org) contains information on more than 400 genes required for embryo development in Arabidopsis. Many of these EMBRYO-DEFECTIVE (EMB) genes encode proteins with an essential function required throughout the life cycle. This raises a fundamental question. Why does elimination of an essential gene in Arabidopsis often result in embryo lethality rather than ga...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملIdentification and Functional Characterization of Arabidopsis icl Mutant Under Trehalose Feeding in Light and Dark Conditions
Trehalose is a non-reducing sugar that plays an important role in plant growth and development. To study the role of trehalose on lipid metabolism and gluconeogenesis, Arabidopsis thaliana wild type (WT) and TreF (a line expressing trehalase) were grown on ½ MS medium with or without 100 mM sucrose and or trehalose in light or continuous darkness. In dark, trehalose leads skotomorphoge...
متن کاملTranscription Regulation of Sex-Biased Genes during Ontogeny in the Malaria Vector Anopheles gambiae
In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at re...
متن کاملAssociation between Sex-Biased Gene Expression and Mutations with Sex-Specific Phenotypic Consequences in Drosophila
Genome-wide mRNA transcription profiles reveal widespread molecular sexual dimorphism or "sex-biased" gene expression, yet the relationship between molecular and phenotypic sexual dimorphism remains unclear. A major unresolved question is whether sex-biased genes typically perform male- and female-specific functions (whether these genes have sex-biased phenotypic or fitness consequences) or hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 180 1 شماره
صفحات -
تاریخ انتشار 2008